Mittlere Schwingungsamplituden, thermodynamische Funktionen und molekulare Polarisierbarkeiten von gemischten Phosphorhalogeniden des Typs PX₂Y

Von

G. Nagarajan und James R. Durig

Department of Chemistry, University of South Carolina, Columbia, South Carolina, USA

und

Achim Müller

Anorganisch-Chemisches Institut der Universität Göttingen, Deutschland

(Eingegangen am 19. Januar 1967)

Es werden verschiedene molekulare Konstanten der Phosphorverbindungen PF₂Cl, PCl₂F, PF₂Br, PBr₂F, PCl₂Br und PBr₂Cl berechnet. Mit Hilfe der Methode von *Cyvin* werden mittlere Schwingungsamplituden für Zimmertemperatur ermittelt. Die mittleren Amplituden des P—F-, P—Cl- und P—Br-Abstandes nehmen mit zunehmender Gruppenelektronegativität der Halogenatome $1/3 \Sigma X_i$ ab. Weiterhin werden thermodynamische Funktionen sowie molekulare Polarisierbarkeiten nach der Methode von *Lippincott* und *Stutman* berechnet.

Von den gemischten Phosphorhalogeniden des Typs PX_2Y sind bisher lediglich für das PCl_2F molekulare Konstanten aus schwingungsspektroskopischen Daten ermittelt worden¹. Weiterhin ist die Kenntnis physikalisch-chemischer Daten von diesen Molekülen ebenfalls gering². Ramanspektroskopische Untersuchungen sind im wesentlichen von Delwaulle

¹ Kraftkonstanten ^{1a, b} und thermodynamische Funktionen: ^{1a} K. Venkateswarlu und K. V. Rajalaksmi, J. Sci. ind. Res. [Indien] **21b**, 349 (1962); ^{1b} K. Venkateswarlu und S. Sundaram, J. chim. phys. **54**, 202 (1957); die hier zugrunde gelegte Zuordnung ist jedoch nach unserer Ansicht nicht richtig (vgl. Tab. 1).

² Vgl. z. B. *Gmelins* Handbuch d. anorg. Chemie: Die Verbindungen des Phosphors; Weinheim 1965.

et al.^{3-6, 7} (z. T. nur an Mischungen der Verbindungen) und IR-spektroskopische Untersuchungen an gasförmigen Substanzen von A. Müller, Niecke und Glemser^{8, 9} durchgeführt worden.

I. Die Schwingungsspektren

Die Normalschwingungen von Verbindungen des vorliegenden Typs klassifizieren sich nach den irreduziblen Darstellungen der Punktgruppe C_s wie folgt.

$$\Gamma = 4 A' + 2 A''.$$

Die 6 Grundschwingungen lassen sich weiterhin folgendermaßen bezeichnen (vgl. Tab. 1)

$$\begin{split} \nu_1(A) &= \nu_s(\mathbf{P}X) \\ \nu_2(A) &= \nu (\mathbf{P}Y) \\ \nu_3(A) &= \delta (\mathbf{P}X_2) \\ \nu_4(A) &= \delta_s (\mathbf{P}X_2Y) \\ \nu_5(A'') &= \delta_{as} (\mathbf{P}X_2) \\ \nu_6(A'') &= \delta_{as} (\mathbf{P}X_2Y) \end{split}$$

Aus Tab. 1 sind die Grundschwingungen, die der Rechnung zugrunde gelegt wurden, ersichtlich. Hierbei wurden soweit wie möglich Schwingungsfrequenzen, die an gasförmigen Substanzen ermittelt wurden, verwendet^{8, 9} (PF₂Cl. PCl₂F, PF₂Br, PBr₂F). Im Falle des PF₂Br liegen bisher lediglich

	$\nu_1(A')$	$ u_2\left(A' ight)$	$ u_3(A')$	$\nu_4(A')$	$\nu_5(A'')$	$\nu_{\mathfrak{s}}\left(A^{''} ight)$	Literatur
PF ₂ Cl	864	545	411	308	852	259	5,8
PCl ₂ F	512	838	200	328	521	268	5,9
PF ₂ Br	858	459	391	(~ 233)	849 ($\sim 212)$	5,9
PBr ₉ F	398	824	126	258	423	220	5, 9
PCloBr*	480	400	230	166	510	149	2, 4, 6, 7
PBr_2Cl^*	380	480	123	197	400	153	2, 4, 6, 7

Tabelle 1. Grundschwingungen (in cm⁻¹) von gemischten Phosphorhalogeniden des Typs PX_2Y

* Zuordnung in dieser Arbeit korrigiert.

³ M. L. Delwaulle, C. r. hebdomad. Sé. Acad. Sci. 222, 1391 (1946); 224, 389 (1947); M. L. Delwaulle und F. François, l. c. 223, 796 (1946).

⁴ M. L. Delwaulle, C. r. hebdomad. Sé. Acad. Sci. 224, 389 (1947).

⁵ F. François und M. L. Delwaulle, J. chim. phys. 46, 87 (1949).

⁶ M. L. Delwaulle und M. Bridoux, C. r. hebdomad. Sé. Acad. Sci. 248, 1342 (1959).

⁷ Vgl. auch O. Theimer, Acta Phys. Austriaca 1, 188 (1947).

⁸ A. Müller, O. Glemser und E. Niecke, Z. Naturforsch. 21b, 732 (1966).

⁸ A. Müller, E. Niecke und O. Glemser, Z. anorg. allgem. Chem. 350, 256 (1967).

IR-Messungen aus unserem Arbeitskreis vor⁹. Für PCl₂Br und PBr₂Cl haben wir auf Raman-Messungen von *Delwaulle*⁴⁻⁶ zurückgegriffen. Die angegebenen Frequenzen dieser Moleküle wurden z. T. direkt gemessen oder abgeschätzt. Die im *Landolt—Börnstein*¹⁰ angegebene Zuordnung wurde z. T. abgeändert.

II. Mittlere Schwingungsamplituden

Die Schwingungsamplituden wurden nach Cyvin¹¹ durch Lösung von

$$det \mid \sum G^{-1} - \Delta E \mid = 0$$

berechnet.

Die theoretischen Zusammenhänge für den Fall von 4atomigen Molekülen mit C_s-Symmetrie sind von *Müller* und *Nagarajan*¹² beschrieben worden. Der Rechnung wurde eine diagonale Σ -Matrix zugrunde gelegt.

Weiterhin wurden, da lediglich im Falle des $PFCl_2$ Strukturdaten bekannt sind², für alle Moleküle näherungsweise Tetraederwinkel sowie folgende Bindungsabstände angenommen P-F = 1,55 Å, P-Cl == 2,02 Å, P-Br = 2,12 Å. Die hiermit berechneten mittleren Schwingungsamplituden sind aus Tab. 2 ersichtlich.

P - XP-Y*X* . . . *X* $X \dots Y$ PF_2Cl 0.04410,0505 0.0675 0,0712 PCl_2F 0,0508 0,04510,0893 0,0735 PF_2Br 0,0449 0,0617 0.06830,0795 PBr₂F 0,0624 0,0453 0.09880,0821 PCl_2Br 0,0517 0.0621 0.09080.0941PBr₂Cl 0,0632 0,05220.1013 0,0964

Tabelle 2. Mittlere Schwingungsamplituden von Phosphorhalogeniden des Typs PX_2Y (in Å) bei 298° K

Vergleicht man die Werte für gebundene Atome, so zeigt sich folgende Gesetzmäßigkeit

 $rac{u_{\mathrm{P-F}}}{\mathrm{ClPF}_2} < \mathrm{BrPF}_2 < \mathrm{Cl}_2\mathrm{PF} < \mathrm{Br}_2\mathrm{PF}$ $rac{u_{\mathrm{P-Cl}}}{\mathrm{F}_2\mathrm{PCl}} < \mathrm{BrPCl}_2 < \mathrm{BrPCl}_2 < \mathrm{Br}_2\mathrm{PCl}$

¹⁰ Landolt-Börnstein, Atom- und Molekularphysik, I. Bd., 2. Teil, Molekeln I; Springer-Verlag, Berlin 1951.

¹¹ S. J. Cyvin, Spectrochim. Acta 15, 828 (1959).

¹² A. Müller und G. Nagarajan, Z. physik. Chem. (im Druck).

$$\frac{u_{P-Br}}{F_2PBr} < Cl_2PBr < FPBr_2 < ClPBr_2$$

Man erkennt, daß die mittlere Schwingungsamplitude eines Phosphorhalogenabstandes, z. B. u_{PCI} , mit steigender Summe der Elektronegativitäten aller Halogenatome abnimmt. Die entsprechenden Durchschnittsfrequenzen^{8, 9} der zugehörigen Valenzschwingungen bzw. die entsprechenden Valenzkraftkonstanten zeigen, wie erwartet, den umgekehrten Gang. Der Grund für den Gang der Schwingungsamplituden bzw. der Valenzkraftkonstanten ist die Zunahme der P-Halogen-Bindekraft mit zunehmender Elektronegativitätssumme der Halogenatome.

Für die Schwingungsamplituden zwischen nicht gebundenen Atomen ergeben sich folgende Gesetzmäßigkeiten:

 $u_{\mathbf{F} \dots \mathbf{F}}: \mathbf{BrPF}_{2} > \mathbf{ClPF}_{2}$ $u_{\mathbf{Cl} \dots \mathbf{Cl}}: \mathbf{BrPCl}_{2} > \mathbf{FPCl}_{2}$ $u_{\mathbf{Br} \dots \mathbf{Cl}}: \mathbf{ClPBr}_{2} > \mathbf{FPBr}_{2}$ $u_{\mathbf{F} \dots \mathbf{Cl}}: \mathbf{ClPFCl} > \mathbf{FPFCl}$ $u_{\mathbf{F} \dots \mathbf{Br}}: \mathbf{BrPFBr} > \mathbf{ClPFBr}$ $u_{\mathbf{Cl} \dots \mathbf{Br}}: \mathbf{BrPClBr} > \mathbf{ClPClBr}.$

Dies ist ebenfalls ein plausibles Ergebnis, da durch Substitution eines leichteren Atoms durch ein schwereres die Grundschwingungsfrequenzen kleiner werden und damit die mittleren Amplituden größer.

III. Thermodynamische Funktionen

Weiterhin haben wir mit den in Tab. 1 aufgeführten Frequenzen und den eingangs erwähnten Strukturdaten thermodynamische Funktionen berechnet.

(Die hier für PF₂Cl angegebenen Daten sind den von uns früher berechneten⁸ vorzuziehen, da wir damals mit Frequenzen, die an flüssigem PF₂Cl gemessen worden sind, gerechnet haben.) Hierbei wurde ein Modell des starren Rotators und harmonischen Oszillators und die Symmetriezahl 1 angenommen. Alle Werte beziehen sich auf den idealen Gaszustand bei 1 Atmosphäre Druck. Den Rechnungen liegen die üblicherweise benutzten Formeln von *Pitzer*¹³ zugrunde. Die Zusammenstellung der Ergebnisse findet man in den Tab. 3-8.

Die hier angegebenen Daten sind für spätere experimentelle thermochemische Untersuchungen dieser Substanzen nützlich.

¹³ K. S. Pitzer, Quantum Chemistry, Prentice Hall, New York 1953.

H. 4/1967]

Tabelle 3. Molwärme C_p^0 , reduzierte Enthalpie $(H_0 - H_0^0)/T$, reduzierte freie Enthalpie $(G_0 - H_0^0)/T$, und Entropie S^0 von PF₂Cl für den idealen Gaszustand bei 1 Atmosphäre (in cal Grad⁻¹ Mol⁻¹)

 <i>T</i> , (^o K)	$(H_0 - H_0^0)/T$	$(G_0-H_0)/T$	S^{0}	C_p°	
200	9,671	56,076	65,747	12,741	
273, 16	10,769	59,264	70,033	14,563	
298,16	11,111	60,217	71,328	15,078	
300	11,132	60,286	71,418	15,099	
400	12,328	63,658	75,986	16,608	
500	13,280	66,505	79,785	17,548	
600	14,047	69,003	83,050	18,156	
700	14,674	71,242	85,916	18,562	
800	15,175	73,214	88,389	18.843	
900	15,598	75,047	90,645	19,043	
1000	15,953	76,720	92,673	19,192	
1100	16,250	78,231	94,481	19,304	
1200	16,507	79,661	96,168	19,389	
1300	16,732	80,984	97,716	19,458	
1400	16,917	82,181	99,098	19,511	
1500	17,106	83,438	100,544	19,558	
1600	17,249	84,496	101,745	19,593	
1700	17,393	85,552	102,945	19.626	
1800	17,508	86, 482	103,990	19,650	
1900	17,633	87,511	105, 144	19,673	
2000	17.732	88.382	106.114	19.692	

IV. Molekulare Polarisierbarkeiten

Molekulare Polarisierbarkeiten lassen sich experimentell mit Hilfe der bekannten Beziehung von *Lorentz-Lorenz* durch Ermittlung des Brechungsindex ermitteln. Zwischen dem Polarisierbarkeitstensor

$$\alpha = \begin{pmatrix} \alpha_{xx} & \alpha_{xy} & \alpha_{yz} \\ \alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\ \alpha_{zx} & \alpha_{zy} & \alpha_{zz} \end{pmatrix}$$

und der hier theoretisch berechneten durchschnittlichen molekularen Polarisierbarkeit besteht folgender Zusammenhang

$$\alpha_M = 1/3 \left(\alpha_{\rm xx} + \alpha_{\rm yy} + \alpha_{\rm zz} \right)$$

Hier sollen nach der Methode von *Lippincott* und *Stutman*¹⁴ die molekularen Polarisierbarkeiten von gemischten Phosphor(III)-Halogeniden berechnet werden.

Unter Annahme eines semiempirischen δ -Funktionenmodells lassen sich nach *Lippincott* und *Stutman*¹⁴ molekulare Polarisierbarkeiten mehr-

¹⁴ E. R. Lippincott und J. M. Stutman, J. physic. Chem. 68, 2926 (1964).

atomiger Moleküle berechnen, die gut mit experimentell ermittelten übereinstimmen. Da in letzter Zeit verschiedentlich über die theoretischen Grundlagen in Zusammenhang mit entsprechenden Berechnungen an mehratomigen Molekülen berichtet worden ist^{15, 16}, sei hier bezüglich der Theorie auf diese Arbeiten^{15, 16} und die Originalarbeit¹⁴ verwiesen. Nagarajan¹⁶ hat entsprechende Rechnungen an 109 Molekülen durchgefün.

Folgende Werte für die δ -Funktionenstärke, die atomaren Polarisie barkeiten α in 10^{-25} cm³ und für *c* in atomaren Einheiten wurden verwendet

$$\begin{array}{l} A_{\rm P}=0.63; \ A_{\rm F}=1.065; \ A_{\rm Cl}=0.753\\ A_{\rm Br}=0.633\\ \hline \alpha_{\rm P}=23.67; \ \alpha_{\rm F}=4.9; \ \alpha_{\rm Cl}=13.88.\\ \hline \alpha_{\rm Br}=19.41\\ \hline c_{\rm P}=3.451; \ c_{\rm F}=5.635; \ c_{\rm Cl}=4.88\\ c_{\rm Br}=4.737 \end{array}$$

Aus Tab. 9 sind die Ergebnisse ersichtlich. Hier sind neben den molekularen Polarisierbarkeiten α_M die Anteile $\sum \alpha_{\parallel p} \sum \alpha_{\parallel n}$ und $\sum 2 \alpha_{\perp}$ aufgeführt. Es gilt hierbei

$$\alpha_M = 1/3 \left(\sum \alpha_{\parallel p} + \sum 2 \alpha_{\perp} + \sum \alpha_{\parallel n} \right).$$

Für die Bindungspolarisierbarkeiten erhält man folgende Werte

Da von keinem der hier untersuchten Moleküle molekulare Polarisierbarkeiten bekannt sind, lassen sich keine Vergleiche mit den berechneten α_M -Werten ziehen. Unsere Ergebnisse können jedoch für spätere experimentelle Untersuchungen von Nutzen sein.

Tabelle 4. Molwärme C_p^0 , reduzierte Enthalpie $(H_0 - H_0^0)/T$, reduzierte freie Enthalpie $(G_0 - H_0^0)/T$, und Entropie S^0 von PCl₂F für den idealen Gaszustand bei 1 Atmosphäre (in cal Grad⁻¹ Mol⁻¹)

 T, (°K.)	(H ₀ —H ₀ ⁰)/T	$(G_0-H_0^0)/T$	S°	C_p°	
 200	10,370	57,892	68,262	13,943	
273,16	11,586	61.317	72,903	15,710	
298,16	11,949	62,341	74,290	16,156	
				Fortsetzung Seite	1551

G. Nagarajan, E. R. Lippincott und J. M. Stutman, J. physic. Chem. 69, 2017 (1965); G. Nagarajan und A. Müller, Z. Naturforsch. 21b, 612 (1966).
 ¹⁶ G. Nagarajan, Z. Naturforsch. 21a, 238 (1966).

<i>T</i> , (°K)	$({H_0} - {H_0}^0)/T$	$(G_0-H_0^{0}/)T$	S^{0}	C_p°
300	11,978	62,422	74,400	16,191
400	13,204	66,043	79,247	17,451
500	14,130	69,084	83,214	18,186
600	14,842	71,725	86,567	18,640
700	15,415	74,074	89,489	18,941
800	15,863	76,149	92,012	19,141
900	16,240	78,046	94,286	19,287
1000	16,538	79,730	96,268	19,389
1100	16,810	81,364	98,174	19,471
1200	17,042	82,862	99,904	19,534
1300	17,223	84,184	101,407	19,580
1400	17,381	85,359	102,740	19,619
1500	17,545	86,666	104,211	19,652
1600	17,687	87,862	105,549	19,679
1700	17,796	88,867	106,663	19,699
1800	17,906	89,953	107,859	19,717
1900	18,008	90,944	108,952	19,734
2000	18,095	91,884	109,979	19.747

Tabelle 4 (Fortsetzung)

Tabelle 5. Molwärme C_p^0 , reduzierte Enthalpie $(H_0 - H_0^0)/T$, reduzierte freie Enthalpie $(G_0 - H_0^0)/T$, und Entropie S^0 von PF₂Br für den idealen Gaszustand bei 1 Atmosphäre (in cal Grad⁻¹ Mol⁻¹)

<i>T</i> , (°K)	$(H_{0} - H_{0}^{0})/T$	$-(G_0-H_0^0)/T$	S^0	Cp°	
200	10,212	59,513	69,725	13,418	
273, 16	11,306	62,863	74,169	15,078	
298, 16	11,639	63,869	75,508	15,518	
300	11,669	63,940	75,609	15,567	
400	12,819	67,464	80,283	16,907	
500	13,728	70,424	84,152	17,759	
600	14,444	72,984	87,428	18,305	
700	15,029	75,258	90,287	18,676	
800	15,501	77,308	92,809	18,930	
900	15,901	79,178	95,079	19,116	
1000	16,220	80,809	97,029	19,251	
1100	16,499	82,379	98,878	19,352	
1200	16,744	83,872	100,616	19,430	
1300	16,955	85,226	102,181	19,493	
1400	17,140	86,462	103,602	19,545	
1500	17,305	87,702	105,007	19,586	
1600	17,450	88,803	106,253	19,620	
1700	17,563	89,792	107,355	19,645	
1800	17,678	90,790	108, 468	19,668	
1900	17,785	91,744	109,529	19,690	
2000	17,887	92,726	110,613	19,707	

<i>T</i> , (°K)	$(H_0 - H_0^0)/T$	(G ₀ H ₀ °)/T	S°	C_p^{0}	
200	11,341	62,982	74,323	15,131	
273,16	12,569	66,718	79,287	16,588	
298,16	12,930	67,853	80,783	16,950	
300	12,948	67,920	80,868	16,968	
400	14,092	71,810	85,902	17,970	
500	14,929	75,052	89,981	18,548	
600	15,566	77,827	93,393	18,908	
700	16,055	80,248	96,303	19,138	
800	16,445	82,384	98,829	19,297	
900	16,776	84,395	101,171	19,412	
1000	17,045	86,165	103,210	19,496	
1100	17,263	87,724	104,987	19,557	
1200	17,465	89,330	106,795	19,606	
1300	17,625	90,696	108,321	19,643	
1400	17,780	92,039	109,819	19,676	
1500	17,897	93,245	111,142	19,697	
1600	18,014	94,453	112,467	19,719	
1700	18,106	95,384	113,490	19,736	
1800	18,193	96,458	114,651	19,748	
1900	18,283	97,480	115,763	19,762	
2000	18,357	98,427	116,784	19,772	

Tabelle 6. Molwärme C_p^0 , reduzierte Enthalpie $(H_0 - H_0^0)/T$, reduzierte freie Enthalpie $(G_0 - H_0^0)/T$, und Entropie S^0 von PBr₂F für den idealen Gaszustand bei 1 Atmosphäre (in cal Grad⁻¹ Mol⁻¹)

Tabelle 7. Molwärme C_p^{0} , reduzierte Enthalpie $(H_0 - H_0^{0})/T$, reduzierte freie Enthalpie $(G_0 - H_0^{0})/T$, und Entropie S^0 von PCl₂Br für den idealen Gaszustand bei 1 Atmosphäre (in cal Grad⁻¹ Mol⁻¹)

<i>T</i> , (°K)	$(H_0 - H_0^0)/T$	$(G_0-H_0)/T$	$S^{\mathfrak{o}}$	C_p^{o}
200	11,621	62,325	73,946	15,670
273,16	12,929	66,161	79,090	17,172
298,16	13,298	67,295	80,593	17,525
300	13,315	67,362	80,677	17,542
400	14,494	71,358	85,852	14,440
500	15,341	74,704	90,045	18,915
600	15,962	77,553	93,515	19,192
700	16,435	80,056	96, 491	19,363
800	16,811	82,277	99,088	19,479
900	17,107	84,280	101.387	19,557
1000	17,363	86,128	103, 491	19,617
1100	17,568	87,788	105,356	19,659
1200	17,734	89,241	106,975	19,691
1300	17,903	90,762	108,665	19,720
1400	18,032	92,099	110,131	19,740
1500	18,145	93,352	111,497	19,756

Fortsetzung Seite 1553

 T, (°K)	$(H_0 - H_0^0)/T$	$(G_0-H_0)/T$	S^{0}	C _p °	
 1600	18,241	94,497	112,738	19,769	
1700	18,329	95,562	113,891	19,780	
1800	18,418	96,704	115,122	19,790	
1900	18,489	97,680	116,169	19,798	
2000	18,534	98,426	116,960	19,803	

Tabelle 7 (Fortsetzung)

Tabelle 8. Molwärme C_p^0 , reduzierte Enthalpie $(H_0 - H_0^0)/T$, reduzierte freie Enthalpie $(G_0 - H_0^0)/T$ und Entropie S^0 von PBr₂Cl für den idealen Gaszustand bei 1 Atmosphäre (in cal Grad⁻¹ Mol⁻¹)

<i>T</i> , (°K)	$(H_0 - H_0^0)/T$	$-(G_0-H_0^0)T$	S^0	C_p^{o}	
200	12,119	64,315	76,434	16,238	
273,16	13,412	68,255	81,667	17,588	
298,16	13,785	69,486	83,271	17,897	
300	13,808	69,565	83,373	17,918	
400	14,940	73,705	88,645	18,683	
500	15,740	77,143	92,883	19,086	
600	16,318	80,074	96,392	19,314	
700	16,755	82,609	99,364	19,456	
800	17,111	84,932	102,043	19,552	
900	17,366	86,852	104,218	19,614	
1000	17,595	88,703	106,298	19,662	
1100	17,787	90,409	108,196	19,698	
1200	17,940	91,920	109,860	19,724	
1300	18,085	93,354	111,439	19,747	
1400	18,206	94,714	112,920	19,764	
1500	18,312	95,975	114,287	19,778	
1600	18,401	97,166	115,567	19,788	
1700	18,481	98,341	116,822	19,796	
1800	18,562	99,391	117,953	19,805	
1900	18,625	100,395	119,020	19,812	
2000	18,680	101,319	119,999	19,816	

Tabelle 9. Molekulare Polarisierbarkeit α_M von gemischten Phosphor(III)-Halogeniden, in 10^{-25} cm³

		$\Sigma \alpha_{ p}$	$\Sigma \alpha_{ n}$	$\Sigma_2 \alpha_{\perp}$	α_M
I	PF ₂ Cl	61,910	29,765	51,016	47.564
E	PCl_2F	96,695	37,462	67,580	67,246
F	${}^{2}\mathrm{F}_{2}\mathrm{Br}$	77,008	34,505	56,049	55,854
F	PBr_2F	126,890	46,942	80,986	84.939
E	Cl_2Br	146,576	49,899	100,443	98,973
F	$\mathrm{Br}_{2}\mathrm{Cl}$	161,674	54,639	110,069	108,794

Die hier durchgeführte Arbeit wurde von der "National Aeronautics and Space Administration" unterstützt. Einer der Autoren (A. M.) dankt Herrn Professor Dr. O. Glemser für stete Förderung.